
Influence of luminescent material properties on stimulated emission luminescent solar concentrators (SELSCs) using a 4-level system
Author(s) -
Andrew G. Flood,
Nazir P. Kherani
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.0a1023
Subject(s) - luminescence , laser linewidth , materials science , spontaneous emission , optics , refractive index , amplified spontaneous emission , laser , wavelength , radiative transfer , quantum efficiency , stokes shift , optoelectronics , physics
The effect of various design and material parameters on the efficiency of stimulated emission-based luminescent solar concentrators (SELSCs) is studied numerically using a 4-level luminescent material containing concentrator. It is shown that the most efficient SELSCs have emission wavelengths of 1.5-1.8 µm, with a strong dependence on the Stokes shift. Depending on the parameters of the system, spontaneous emission is shown to nevertheless account for a significant fraction of potential energy generation. Assuming a propagation loss constant of -0.1m -1 , and a refractive index of 1.5, the optimal length of an SELSC is found to be ~1.5m. Given these losses and an efficiency target of 10% greater than traditional LSCs, the required material emission linewidth varies from 10 to 100nm, with maximum thicknesses of 3-30 µm. Further, when reflection and propagation losses are considered, a single laser pass is preferred over multiple passes. It is also shown that SELSCs are significantly less sensitive to luminescent quantum efficiency when compared to conventional LSCs due to the increased radiative emission rate.