z-logo
open-access-imgOpen Access
Resonance control of a silicon micro-ring resonator modulator under high-speed operation using the intrinsic defect-mediated photocurrent
Author(s) -
Zhao Wang,
D. J. Paez,
Ahmed I. Abd El-Rahman,
Peng Wang,
Liam Dow,
J.C. Cartledge,
Andrew P. Knights
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.024827
Subject(s) - resonator , materials science , photocurrent , optoelectronics , optics , bandwidth (computing) , physics , computer science , telecommunications
A method to stabilize the resonance wavelength of a depletion-type silicon micro-ring resonator modulator during high-speed operation is described. The method utilizes the intrinsic defect-mediated photo-absorption of a silicon waveguide and results in a modulator chip fabrication process that is free of heterogeneous integration (for example using germanium), thus significantly reducing the complexity and cost of manufacture. Residual defects, present after p-n junction formation, are found to produce an adequate photocurrent for use as a feedback signal, while an integrated heater is used to compensate for thermal drift via closed-loop control. The photocurrent is measured by a source-meter, which simultaneously provides a DC bias to the integrated heater during high-speed operation. A drop-port or an integrated extrinsic detector is not needed. This feedback control method is experimentally demonstrated via a computer-aided proportional-integral-differential loop. The resonance locking is validated for 12.5 Gb/s intensity modulation in a back-to-back bit-error-rate measurement. The stabilization method described is not limited to a specific modulator design and is compatible with speeds greatly in excess of 12.5 Gb/s, in contrast to the bandwidth limitation of other stabilization methods that rely on intrinsic photo-carrier generation through non-linear processes such as two-photon-absorption. Further, the use of intrinsic defects present after standard fabrication insures that no excess loss is associated with this stabilization method.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here