
Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique
Author(s) -
Ronghuan Chen,
Hua Liu,
Haolin Zhang,
Wenjuan Zhang,
Jia Xu,
Wenbin Xu,
Jinhuan Li
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.021958
Subject(s) - lithography , optics , enhanced data rates for gsm evolution , materials science , pixel , extreme ultraviolet lithography , x ray lithography , resist , physics , computer science , nanotechnology , artificial intelligence , layer (electronics)
The resolution of digital micro-mirror device (DMD) scanning lithography is limited in the transverse direction (the scanning direction is vertical) as a result of the compacted size of the DMD micro-mirror and the low magnification of the projection lens. Above-stated restrictions lead to an unsatisfactory saw-tooth edge (size ~one DMD pixel) after the lithography process within all directions except for the scanning orientation. In order to smooth the edge, an optimized sub-pattern construction method, described as the combination of wobulation techniques and the continuous scanning lithography process, is proposed. Afterward, lithography experiments were implemented by introducing the wobulation techniques within the DMD scanning lithography system. The experimental results show that the saw-tooth edge is reduced to nearly 0.5 pixel size after 1/2 pixel dislocation superposition exposure, and is even scaled down to less than 0.1 pixel after 1/4 pixel dislocation superposition exposure. At this point, the edge of the lithography pattern is appropriately smoothed. The effectiveness of the above-mentioned method that improves the edge smoothness of the lithography pattern is demonstrated.