z-logo
open-access-imgOpen Access
Propagation of multi-cosine-Laguerre-Gaussian correlated Schell-model beams in free space and atmospheric turbulence
Author(s) -
Jun Zhu,
Xiaoli Li,
Huiqin Tang,
Kaicheng Zhu
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.020071
Subject(s) - physics , optics , laguerre polynomials , gaussian , beam (structure) , angular spectrum method , scalar (mathematics) , trigonometric functions , degree of coherence , computational physics , diffraction , mathematics , quantum mechanics , geometry
We introduce a class of random stationary, scalar source named as multi-cosine-Laguerre-Gaussian-correlated Schell-model (McLGCSM) source whose spectral degree of coherence (SDOC) is a combination of the Laguerre-Gaussian correlated Schell-model (LGCSM) and multi-cosine-Gaussian correlated Schell-model (McGCSM) sources. The analytical expressions for the spectral density function and the propagation factor of a McLGCSM beam propagating in turbulent atmosphere are derived. The statistical properties, such as the spectral intensity and the propagation factor, of a McLGCSM beam are illustrated numerically. It is shown that a McLGCSM beam exhibits a robust ring-shaped beam array with adjustable number and positions in the far field by directly modulating the spatial structure of its SDOC in the source plane. Moreover, we provide a detailed insight into the theoretical origin and characteristics of such a ring-shaped beam array. It is demonstrated that these peculiar shaping properties are the concentrated manifestation of the individual merits respectively associated with the Laguerre- and multi-cosine-related factors of the whole SDOC. Our results provide a novel scheme to generate robust and controllable ring-shaped beam arrays over large distances, and will widen the potentials for manipulation of multiple particles, free-space optical communications and imaging in the atmosphere.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here