z-logo
open-access-imgOpen Access
Subwavelength grating slot (SWGS) waveguide on silicon platform
Author(s) -
Zhengsen Ruan,
Li Shen,
Shuang Zheng,
Jian Wang
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.018250
Subject(s) - materials science , waveguide , cladding (metalworking) , grating , silicon , optics , optoelectronics , slot waveguide , silicon photonics , physics , metallurgy
We present a subwavelength grating slot (SWGS) waveguide on silicon platform. The SWGS waveguide is characterized by the merging of a slot structure and a subwavelength grating (SWG) structure. The mode guiding mechanism (SWG slot mode) relies on the combination of surface enhanced supermode (slot mode) in a slot waveguide and Bloch mode (SWG mode) in an SWG waveguide. The mode properties and nonlinearities of silicon-based strip waveguide, slot waveguide, SWG waveguide and SWGS waveguide are studied in detail for comparison. It is found that the designed SWGS waveguide with SiO 2 /air cladding features greatly reduced nonlinearity due to the delocalized light from the silicon region. We also optimize the SWGS waveguide with varied geometries (silicon width, slot width, period, duty cycle) using the mode confinement factor and evaluation factor. An ultralow nonlinearity of 3.20 /W/m is obtained. Moreover, we design two types of compatible strip-to-SWGS mode converters, showing favorable performance with broadband high conversion efficiency. The obtained results indicate that the proposed SWGS waveguide with greatly reduced nonlinearity may find potential applications in chip-scale data transmission for optical interconnects. The SWGS waveguide with air cladding or low-refractive-index nonlinear material cladding may also see possible applications in optical sensing and nonlinear optical signal processing.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here