z-logo
open-access-imgOpen Access
Two-dimensional reversed Cherenkov radiation on plasmonic thin-film
Author(s) -
Weihao Liu,
Linbo Liang,
Qika Jia
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.018216
Subject(s) - cherenkov radiation , optics , thin film , radiation , metamaterial , plasmon , terahertz radiation , cherenkov detector , physics , wavelength , optoelectronics , materials science , transition radiation , nanotechnology , detector
The reversed Cherenkov radiation is one of the most attractive research topics because of its unique characteristics and promising applications. It was generally believed that reversed Cherenkov radiations exist only in left-handed metamaterials (double negative mediums). In the present paper, we demonstrated that they can also be generated on plasmonic thin-films. Reversed Cherenkov radiations in the terahertz region and in the visible light region were achieved on the metamaterial thin-film and the metal thin-film, respectively. Their radiation frequencies and directions, which are interdependent with each other, are controllable. For the normal Cherenkov radiation, the wavelength on the thin-film increases with the frequency; whereas for the reversed Cherenkov radiation, the opposite is true. Theoretical analyses and simulations revealed that the normal or reversed Cherenkov radiation is generated depending on whether the forward or backward surface modes are excited on the plasmonic thin-film. Requirements of these reversed Cherenkov radiations were found out.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here