z-logo
open-access-imgOpen Access
Cladding-free efficiently tunable nanobeam cavity with nanotentacles
Author(s) -
Jianhao Zhang,
Sailing He
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.012541
Subject(s) - cladding (metalworking) , free spectral range , resonator , materials science , photonics , optoelectronics , optics , photonic crystal , photon , nanophotonics , physics , metallurgy
We propose a cladding-free, efficiently tunable, high-quality factor (Q) nanobeam cavity with subwavelength-period nanotentacles (NT), adequately investigate the performance of the cavity, and study the directional heat transfer. By virtue of the excellent heat transfer of Si nanotentacles, a tuning range of more than 6 nm wavelength, with 24mW and 10 KHz switching rate, and 13 μs raising time is experimentally obtained. This result is about twentyfold better than the previous work by Fegadolli [ACS Photon. 2, 470-474 (2015)]. A potential 12nm tuning range with identical power is also theoretically suggested by modifying the silicon structure. With an optimized design, these nanotentacles are demonstrated to have a minimal effect to the cavity and are available to serve as photonic waveguides. This cladding-free design, with a simple fabrication process, is comparable to other proposals in which deep etching, suspended treatment, and troublesome heterogeneous-integration may be needed. Finally but importantly, this smart design can be applied to other photonic cavities, particularly cavities such as ring/disk resonators, in which we reasonably predict a better tuning efficiency due to the thermal circulation. We believe this design is fairly suitable for applications in which light-matter interaction is of primary importance, such as sensing, particle trapping, cavity quantum electrodynamics (CQED), and III-V/Si hybrid lasers with external cavities.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom