
Focal plane filter array engineering I: rectangular lattices
Author(s) -
Israel J. Vaughn,
Andrey Alenin,
J. Scott Tyo
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.011954
Subject(s) - optics , polarization (electrochemistry) , polarizing filter , cardinal point , wavelength , irradiance , optical filter , physics , chemistry
Focal planes arrays (FPA) measure values proportional to an integrated irradiance with little sensitivity to wavelength or polarization in the optical wavelength range. The measurement of spectral properties is often achieved via a spatially varying color filter array. Recently spatially varying polarization filter arrays have been used to extract polarization information. Although measurement of color and polarization utilize separate physical methods, the underlying design and engineering methodology is linked. In this communication we derive a formalism which can be used to design any type of periodic filter array on a rectangular lattice. A complete system description can be obtained from the number of unit cells, the pixel shape, and the unit cell geometry. This formalism can be used to engineer the channel structure for any type of periodic tiling of a rectangular lattice for any type of optical filter array yielding irradiance measurements.