
Near-infrared hybrid plasmonic multiple quantum well nanowire lasers
Author(s) -
Jiamin Wang,
Wei Wei,
Xin Yan,
Jinnan Zhang,
Xia Zhang,
Xiaomin Ren
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.009358
Subject(s) - plasmon , materials science , lasing threshold , optoelectronics , nanowire , photonics , laser , optics , infrared , surface plasmon , wavelength , physics
The lasing characteristics of hybrid plasmonic AlGaAs/GaAs multiple quantum well (MQW) nanowire (NW) lasers beyond diffraction limit have been investigated by 3D finite-difference time-domain simulations. The results show that the hybrid plasmonic MQW NW has lower threshold gain over a broad diameter range in comparison with its photonic counterpart. Beyond the diffraction limit, the hybrid plasmonic MQW NW has a lowest threshold gain of 788 cm -1 at a diameter of 130 nm, and a cutoff diameter of 80 nm, half that of the photonic lasers. In comparison with the hybrid plasmonic core-shell NWs, the hybrid plasmonic MQW NWs exhibit significantly lower threshold gain, higher Purcell factor, and smaller cutoff diameter, which are attributed to the superior overlap between the hybrid plasmonic modes and gain medium, as well as a stronger optical confinement due to the grating-like effect of MQW structures. Moreover, the hybrid plasmonic MQW NW has a lower threshold gain than that of the core-shell NW over a broad wavelength range. The hybrid plasmonic MQW NW structure is promising for ultrasmall and low-consumption near-infrared nanolasers.