
Exploiting high-order phase-shift keying modulation and direct-detection in silicon photonic systems
Author(s) -
Jinhong You,
Nicolae C. Panoiu
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.008611
Subject(s) - phase shift keying , silicon photonics , photonics , modulation (music) , quadrature amplitude modulation , keying , bit error rate , waveguide , optics , physics , optical interconnect , optical communication , superposition principle , electronic engineering , optoelectronics , computer science , telecommunications , interconnection , engineering , decoding methods , acoustics , quantum mechanics
A computational approach to evaluate the bit-error ratio (BER) in silicon photonic systems employing high-order phase-shift keying (PSK) modulation formats is presented. Specifically, the investigated systems contain a silicon based optical interconnect, namely a strip silicon photonic waveguide or a silicon photonic crystal waveguide, and direct-detection receivers suitable to detect PSK and amplitude-shaped PSK signals. The superposition of a PSK signal and complex additive white Gaussian noise passes through the optical interconnect and subsequently through two detection-branch receivers. To model the signal propagation in the silicon optical interconnects we used a modified nonlinear Schrödinger equation, which incorporates all relevant linear and nonlinear optical effects and the mutual interaction between free-carriers and the optical field. Finally, the BER is calculated by applying a frequency-domain approach based on the Karhunen-Loève series expansion method. Our computational studies of the BER reveal that the optical power, type of PSK modulation, waveguide length, and group-velocity are key factors characterizing the system BER, their influence on BER being more significant in a photonic system with larger nonlinearity. In particular, our analysis shows that the system performance is affected to a much larger extent when the signal propagates in the slow-light regime, despite the fact that this regime allows for a significantly reduced length of optical interconnects.