z-logo
open-access-imgOpen Access
Metamaterial perfect absorbers with solid and inverse periodic cross structures for optoelectronic applications
Author(s) -
Haochi Yu,
Ziyi Zhao,
Qinbai Qian,
Jie Xu,
Peng Gou,
Yuexin Zou,
Jun Cao,
Le Yang,
Jie Qian,
Zhenghua An
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.008288
Subject(s) - finite difference time domain method , metamaterial , materials science , optoelectronics , semiconductor , optics , metamaterial absorber , figure of merit , dielectric , absorption (acoustics) , photonics , physics , tunable metamaterials
Metamaterial based on a metal/insulator/metal (MIM) tri-layer structure provides an agile platform to realize high absorption efficiency for a variety of applications including semiconductor optoelectronic detectors. In this work, we use the finite time domain difference (FDTD) method and coupled mode theory (CMT) to numerically study metal/semiconductor/metal (MSM) structures and discuss their effective absorption for optoelectronic application. We compare MSM structures with a different top metal layer design and find that cross shaped absorber (CSA) and it's complementary cross shaped absorber (CCSA) exhibit different phase diagrams due to a distinctive dependence of radiation loss on geometrical parameters. Our results show that CSA (CCSA) structures are suitable for thinner (thicker) sandwiched semiconductor with a larger (smaller) imaginary part of its dielectric constant. The necessary condition to realize a maximum figure of merit (FOM) value for effective absorption is discussed in comparison with the perfect absorber condition. Our work may provide guidelines to design the general light-harvesting optoelectronic devices with high efficiencies based on metamaterial-semiconductor hybrid systems.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom