Blazed wire-grid polarizer for plasmon-enhanced polarization extinction: design and analysis
Author(s) -
ChangHun Lee,
Eunji Sim,
Donghyun Kim
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.008098
Subject(s) - polarizer , materials science , optics , extinction ratio , fabrication , photolithography , optoelectronics , lithography , plasmon , polarimetry , polarization (electrochemistry) , surface plasmon , scattering , physics , birefringence , wavelength , chemistry , medicine , alternative medicine , pathology
We explore plasmon-enhanced wire-gird polarizers (WGPs) to achieve improved polarimetric performance with more relaxed fabrication parameters compared to conventional WGP. A WGP designed with a blazed wire-grid profile was considered for plasmonic enhancement. The results show that a blazed WGP can achieve extremely high polarimetric extinction at a longer wire-grid period (Λ) compared to conventional WGP structure. Under the optimum geometrical parameters, a blazed WGP may attain an extinction ratio of over 40 dB at Λ = 800 nm, which may allow photolithography for fabrication. In contrast, conventional WGPs obtained comparable performance at Λ = 200 nm, requiring more difficult lithographic techniques. The study can therefore be of significant importance for WGPs to be more widely available for diverse applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom