Open Access
Photon blockade via quantum interference in a strong coupling qubit-cavity system
Author(s) -
Wen-Wu Deng,
Gaoxiang Li,
Hong Qin
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.006767
Subject(s) - physics , master equation , qubit , photon , quantum mechanics , cavity quantum electrodynamics , photon antibunching , hamiltonian (control theory) , quantum electrodynamics , quantum optics , quantum , open quantum system , mathematics , mathematical optimization
In a coherently-driven nanocavity QED system, the one-photon blockade via quantum interference is investigated by the modified Lindblad master equation and without using the secular approximation as well. Based on the dressed bases of the Rabi Hamiltonian, a modified Lindblad master equation is obtained, which is valid for any arbitrary degree of the qubit-cavity interaction. It is found that the damping coefficients are very sensitive to interaction strength between the qubit and the cavity mode. How to enhance the one-photon blockade by using the quantum interference effect is discussed with the generalized second-order correlation function and the second-order perturbation in the five-state truncation of the Hilbert space. It is found that, under suitable pump or detection conditions, a strong one-photon blockade can be realized by completely eliminating the two-photon emission. Moreover, even for a strong cavity damping rate, there exhibits a large number of cavity photons by utilizing the quantum interference mechanism.