
Highly n-doped germanium-on-insulator microdisks with circular Bragg gratings
Author(s) -
Xuejun Xu,
Hajime Hashimoto,
Kentarou Sawano,
Takuya Maruizumi
Publication year - 2017
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.006550
Subject(s) - materials science , germanium , optics , optoelectronics , fiber bragg grating , grating , substrate (aquarium) , doping , wavelength , silicon , physics , oceanography , geology
We demonstrate germanium (Ge) microdisks surrounded by highly reflective circular Bragg gratings on highly n-doped germanium-on-insulator (GOI) substrate. The GOI substrate is fabricated by wafer bonding from Ge grown on Si substrate, and n-type doping concentration of 2.1×10 19 cm -3 is achieved by phosphorus diffusion from a spin-on-dopant source. Very sharp Fabry-Perot resonant peaks with high contrast fringes and Q-factors up to 400 are observed near the direct band gap of Ge in photoluminescence spectra. The reflectivity of gratings are enhanced by a factor larger than 3 in a wide wavelength range from 1.57 to 1.82 µm, compared with that of Ge/SiO 2 interfaces in normal microdisks without circular Bragg gratings. The surface emission intensity of the devices is found to be increased by the grating period. Our results indicate that GOI microdisk with circular Bragg grating is a promising optical resonator structure suitable for realizing low threshold, compact Ge lasers integrated on Si substrate.