z-logo
open-access-imgOpen Access
Hybrid imprinting process to fabricate a multi-layer compound eye for multispectral imaging
Author(s) -
Jianwei Chen,
Hiu Hung Lee,
Dongping Wang,
Si Di,
ShihChi Chen
Publication year - 2017
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.25.004180
Subject(s) - multispectral image , optics , materials science , computer science , photodetector , optoelectronics , computer vision , physics
We present a high-precision hybrid imprinting method to fabricate multi-layer micro-optical structures on nonplanar substrates using a custom-built vacuum imprinting system; with the application of kinematic couplings that align the flexible stamps in all six degrees of freedom, a cross-layer pattern registration precision of 400 nm has been achieved on nonplanar substrates. To demonstrate the precision and feasibility of the new process and instrument, we have designed and fabricated a multi-layer artificial compound eye (ACE) for multispectral imaging. The shapes and sizes of all 12 micro-lenses on the ACE are optimized and integrated with different color filers (red, green and blue) so that the light from different channels and of different spectral contents will focus to the same plane, where the photodetector is located. Next, the multi-layer ACE is installed in a portable optical system for simultaneous multispectral imaging, i.e., to perform pattern detection by looking at specific frequency windows. Imaging experiments are devised and performed on (1) color blindness test cards, (2) space image, and (3) breast and gastric tumor samples. The results confirm the system's capabilities of frequency separation, extraction of hidden information, and tumor identification.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here