
Fiber-based frequency-degenerate polarization entangled photon pair sources for information encoding
Author(s) -
Fei Zhu,
Wei Zhang
Publication year - 2016
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.025619
Subject(s) - physics , photon polarization , quantum entanglement , photon , polarization (electrochemistry) , degenerate energy levels , optics , photon entanglement , bell state , quantum channel , quantum information science , quantum mechanics , quantum , chemistry
In this paper, a generation scheme of telecom band frequency-degenerate polarization entangled photon pairs is proposed and demonstrated experimentally. It is based on the vector spontaneous four wave mixing (SFWM) process in a Sagnac fiber loop, in which two frequency-degenerate and polarization orthogonal biphoton states have equal probabilities for generating along the clockwise and counter-clockwise directions. The quantum interference between them at the 50:50 fiber coupler of the fiber loop separates the two frequency-degenerate photons in a pair, leading to the generation of polarization entanglement. The raw fringe visibilities of the two-photon interferences under two non-orthogonal polarization bases are 91% and 90%, respectively. Information can be encoded on the generated photon pairs using the polarization entangled Bell states, which requires the frequency-degenerate property. It is demonstrated by a simplified Bell state measurement with a fringe visibility of 83%.