Open Access
Compensation of multi-channel mismatches in high-speed high-resolution photonic analog-to-digital converter
Author(s) -
Guang Yang,
Weiwen Zou,
Lei Yu,
Kan Wu,
Jianping Chen
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.024061
Subject(s) - effective number of bits , multiplexing , jitter , analog to digital converter , photonics , channel (broadcasting) , computer science , electronic engineering , channel spacing , optics , wavelength division multiplexing , computer hardware , physics , wavelength , electrical engineering , telecommunications , engineering , voltage , cmos
We demonstrate a method to compensate multi-channel mismatches that intrinsically exist in a photonic analog-to-digital converter (ADC) system. This system, nominated time-wavelength interleaved photonic ADC (TWI-PADC), is time-interleaved via wavelength demultiplexing/multiplexing before photonic sampling, wavelength demultiplexing channelization, and electronic quantization. Mismatches among multiple channels are estimated in frequency domain and hardware adjustment are used to approach the device-limited accuracy. A multi-channel mismatch compensation algorithm, inspired from the time-interleaved electronic ADC, is developed to effectively improve the performance of TWI-PADC. In the experiment, we configure out a 4-channel TWI-PADC system with 40 GS/s sampling rate based on a 10-GHz actively mode-locked fiber laser. After multi-channel mismatch compensation, the effective number of bit (ENOB) of the 40-GS/s TWI-PADC system is enhanced from ~6 bits to >8.5 bits when the RF frequency is within 0.1-3.1 GHz and from ~6 bits to >7.5 bits within 3.1-12.1 GHz. The enhanced performance of the TWI-PADC system approaches the limitation determined by the timing jitter and noise.