
Modeling hemispherical reflectance for natural surfaces based on terrestrial laser scanning backscattered intensity data
Author(s) -
Kai Tan,
Xinbin Cheng,
Xiaolong Cheng
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.022971
Subject(s) - optics , laser scanning , intensity (physics) , remote sensing , scanner , reflectivity , root mean square , spectrometer , angle of incidence (optics) , mean squared error , materials science , surface roughness , bidirectional reflectance distribution function , laser , physics , mathematics , geology , statistics , quantum mechanics , composite material
Independent of instrumental properties and scanning geometry, target reflectance is significantly important for terrestrial laser scanning (TLS) data processing and utilization, especially in multi-temporal and multi-sensor cases. In addition to the 3D topographic coordinates, TLS systems also record the backscattered intensity value of each point that provides additional information on the reflectance characteristics of the scanned surface. However, a number of confounding variables, particularly the distance and incidence angle, distort the ability of the original intensity to directly retrieve the target reflectance. This study proposes a new method to model the hemispherical reflectance of natural surfaces from the TLS intensity data by eliminating the effects of incidence angle and distance. The incidence angle effect is corrected by the Oren-Nayar reflectance model which takes individual surface roughness into account whereas the irregular distance effect is eliminated by reference targets without estimating the specific distance-intensity function. The Faro Focus 3D 120 terrestrial scanner is utilized in the case study. Six typical natural surfaces are chosen as the experimental objects. Results imply that the proposed method exhibits high accuracy in retrieving reflectance values. The deviation of the retrieved reflectance values from that measured by a spectrometer is approximately 4.29% and the root mean square error (RMSE) is approximately 0.0562.