
Optical zooming based on focusing grating in direct drive ICF
Author(s) -
Xiaoxia Huang,
Hu D,
Wei Zhou,
Weizhong Dai,
Xiaotie Deng,
Qiang Yuan,
Qi Zhu,
Jing Feng
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.022051
Subject(s) - optics , grating , collimated light , laser , wavefront , materials science , focal length , physics , lens (geology)
In direct drive ICF, optical zooming is an effective way to mitigate cross-beam energy transfer and increase the hydrodynamic efficiency, by reducing the spot size of the laser beams while target compressing. In this paper, a novel optical zooming scheme is proposed, which employs a focusing grating to focus the broadband laser pulse, changing the spot size on the target within single beamlet. Experimentally, a focusing grating with clean aperture of 40-mm × 40-mm placed after the collimated light successfully realized the peak-valley of defocusing wavefront distribution of 0.73 µm as the wavelength ranging from 1052.43 nm to 1053.23 nm. Extended to the full-sized focusing grating with laser beam of 360-mm × 360-mm, it is derived that the focal spot reduction reaches to 21.8% with the 3rd harmonic light ranging from 350.81 nm to 351.08 nm, decreasing from 375 µm to 294 µm with 300 µm shaping continuous phase plate.