
Generation of Q-switched mode locking controlled rectangular noise-like soliton bunching in a Tm-doped fiber laser
Author(s) -
Tian Qiao,
Wei-Cheng Chen,
Wei Lin,
Zhongmin Yang
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.018755
Subject(s) - fiber laser , optics , mode locking , laser , soliton , ring laser , materials science , physics , nonlinear system , quantum mechanics
We report on an interesting phenomenon of the combination of Q-switched mode locked pulses (QSMLP) and rectangular noise-like pulses (RNLP) as a unit in a Tm-doped ring fiber laser which contains a Fabry-Perot (F-P) subcavity based on the nonlinear polarization evolution (NPE) technique. The RNLP and QSMLP are independently generated in the ring cavity and F-P subcavity, respectively. A notable characteristic is that the physical parameters of RNLP, e.g. repetition rate and pulse duration, are controlled by QSMLP. Thus, they form as a composite bunching, which is termed as "Q-switched mode locking controlled rectangular noise-like soliton bunching (QRNSB)". Further investigation shows that the existence of QRNSB only occurs in high pumping conditions, while both fundamental mode-locking pulses and the coexistence of QSMLP and solitons are achieved in low pumping ones. Our work can enrich the understanding of the nonlinear dynamics in fiber lasers.