
Peak power fluctuation due to timing jitter in synchronized time-lens source for coherent Raman scattering microscopy
Author(s) -
Ke Wang,
Jiaqi Wang,
Ping Qiu
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.009645
Subject(s) - jitter , optics , lens (geology) , laser , raman scattering , mode locking , physics , raman spectroscopy , computer science , telecommunications
Synchronized time-lens source is a promising source solution for coherent Raman scattering (CRS) microscopy. Contrary to conventional (single) time-lens source which is driven by electrical signals from a fixed-frequency radio-frequency (RF) source, the synchronized time-lens source is driven by electrical signals from optoelectronic detection of the optical output of the mode-locked laser to which it is synchronized. Consequently, the driving frequency suffers from fluctuation if there is intrinsic timing jitter of the mode-locked laser output. In this paper through numerical simulation, we demonstrate that this timing jitter will be translated into pulse-to-pluse fluctuation of the peak power of the synchronized time-lens source. The larger the intrinsic timing jitter of the mode-locked laser is, the larger this peak power fluctuation of the synchronized time-lens source is. Besides, our results indicate that an effective means of suppressing this peak power fluctuation is to reduce the bandwidth of the RF filter for the phase modulators.