z-logo
open-access-imgOpen Access
11 MW peak power in doubly QML composite Nd:YVO_4/Nd:YVO_4/Nd:YVO_4/KTP sub-nanosecond green laser with EO and Bi-GaAs
Author(s) -
Shixia Li,
Dechun Li,
Shengzhi Zhao,
Guiqiu Li,
Xiangyang Li,
Hui Qiao
Publication year - 2016
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.004022
Subject(s) - materials science , nanosecond , laser , optics , q switching , pulse duration , optoelectronics , pulse width modulation , power (physics) , physics , quantum mechanics
By simultaneously employing electro-optic (EO) modulator and Bi-doped GaAs, dual-loss-modulated Q-switched and mode-locked (QML) multi-segment composite Nd:YVO4/Nd:YVO4/Nd:YVO4/KTP sub-nanosecond green laser is demonstrated with low repetition rate and high peak power. When the incident pump power is up to 6.93 W, only one mode-locking pulse underneath a Q-switching envelope is generated with sub-nanosecond pulse duration at one kilohertz repetition rate. An average output power of 445 mW and a pulse duration of 399 ps are obtained with the incident pump power of 11.13 W, corresponding to a peak power of 1.115 MW which is the highest one in doubly QML sub-nanosecond green laser by now. The laser characteristics are better than those obtained with EO and GaAs. The experimental results indicate that Bi-GaAs is a promising saturable absorber for dual-loss-modulated QML laser.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom