
Ray-based optical design tool for freeform optics: coma full-field display
Author(s) -
Aaron Bauer,
Jannick P. Rolland,
Kevin P. Thompson
Publication year - 2016
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.24.000459
Subject(s) - zernike polynomials , coma (optics) , wavefront , optics , computer science , field (mathematics) , light field , field of view , point (geometry) , optical aberration , computer vision , physics , mathematics , pure mathematics , geometry
The field of optical fabrication has progressed to a point where manufacturing optical quality freeform surfaces is no longer prohibitive. However, to stimulate the development of freeform systems, optical designers must be provided with the necessary tools. Full-field displays are an example of such a tool. Identifying the field dependence of the dominant aberrations of a freeform system is critical for a controlled optimization and with the help of full-field displays, this can be accomplished. Of specific interest is coma, an often system-limiting aberration and an aberration that has recently been directly addressed with freeform surfaces. In this research, we utilize nodal aberration theory to develop a ray-based method to generate a coma full-field display that circumvents wavefront fitting errors that can affect Zernike polynomial-based full-field displays for highly aberrated freeform starting designs.