Ultra-low threshold avalanche gain from solar-blind photodetector based on graded-band-gap-cubic-MgZnO
Author(s) -
Xiuhua Xie,
Zhenzhong Zhang,
Binghui Li,
Shuangpeng Wang,
Dezhen Shen
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.032329
Subject(s) - responsivity , photodetector , materials science , optoelectronics , heterojunction , band gap , optics , biasing , electron , voltage , physics , quantum mechanics
A larger ratio of conduction-band offset to valence-band offset is the unique character for Mg(x)Zn(1-x)O alloys. For this reason, it is feasible to build a quasi-electric forces, caused by the spatial gradient of the conduction edge, exerting on the electrons. In this paper, a novel graded band gap cubic-MgZnO-based solar-blind photodetector is successfully fabricated from Graded-Band-Gap-Cubic-MgZnO/i-MgO/p-Si heterojunction, via changing stoichiometry spatial gradient. Due to quasi-electric fields in non-uniform MgZnO, the multiple carriers are generated under ultra-low threshold bias voltage. The photodetector showed high performance, namely, high responsivity, quantum efficiency, high sensitivity and selectivity towards the solar-blind spectrum, and fast response times.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom