
Polymer-dispersed liquid crystal devices with graphene electrodes
Author(s) -
Seok-Hwan Chung,
Hee Yeon Noh
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.032149
Subject(s) - materials science , graphene , electrode , indium tin oxide , liquid crystal , optoelectronics , polymer , liquid crystal display , electrochromic devices , nanotechnology , electrochromism , composite material , thin film , chemistry
Although polymer-dispersed liquid crystal (PDLC) devices have considerable potential application in smart windows, the high material cost of the indium tin oxide (ITO) electrodes conventionally used in these devices hinders their wide usage. In this work, we explore the use of graphene electrodes as a potential substitute for ITO electrodes in PDLC devices. The fabricated PDLC devices with graphene electrodes exhibit higher contrast and faster response than PDLC devices with ITO electrodes fabricated using the same chemical formulation and polymerization process. However, they also exhibit higher operation voltage and haze, which is primarily attributed to the inherently large resistance and inhomogeneity of the large-area graphene sheets initially transferred onto the transparent substrates. PDLC devices with graphene electrodes are robust under standard operating conditions and also have the advantage of flexibility and stretchability, unlike PDLCs with ITO electrodes.