
Frequency tripling mirror
Author(s) -
Cristina Rodríguez,
Stefan Günster,
Detlev Ristau,
W. Rudolph
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.031594
Subject(s) - optics , materials science , second harmonic generation , reflection (computer programming) , interference (communication) , wavelength , stack (abstract data type) , optoelectronics , laser , physics , telecommunications , channel (broadcasting) , computer science , programming language
A frequency tripling mirror (FTM) is designed, fabricated and demonstrated. The mirror consists of an aperiodic sequence of metal oxide layers on a fused silica substrate tailored to produce the third harmonic in reflection. An optimized 25-layer structure is predicted to increase the reflected TH by more than five orders of magnitude compared to a single hafnia layer, which is a result of global compensation of the phase mismatch of TH and fundamental, field enhancement and design favoring reflection. Single pulse conversion efficiencies approaching one percent have been observed with the 25-layer stack for fundamental wavelengths in the near infrared and 55 fs pulse duration. The FTM is scalable to higher conversion, larger bandwidths and other wavelength regions making it an attractive novel nonlinear optical component based on optical interference coatings.