z-logo
open-access-imgOpen Access
Low-complexity optical phase noise suppression in CO-OFDM system using recursive principal components elimination
Author(s) -
Xiaojian Hong,
Sailing He
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.024077
Subject(s) - phase noise , laser linewidth , principal component analysis , computer science , orthogonal frequency division multiplexing , computational complexity theory , algorithm , quadrature amplitude modulation , optics , phase shift keying , bit error rate , laser , physics , telecommunications , decoding methods , channel (broadcasting) , artificial intelligence
A low-complexity optical phase noise suppression approach based on recursive principal components elimination, R-PCE, is proposed and theoretically derived for CO-OFDM systems. Through frequency domain principal components estimation and elimination, signal distortion caused by optical phase noise is mitigated by R-PCE. Since matrix inversion and domain transformation are completely avoided, compared with the case of the orthogonal basis expansion algorithm (L = 3) that offers a similar laser linewidth tolerance, the computational complexities of multiple principal components estimation are drastically reduced in the R-PCE by factors of about 7 and 5 for q = 3 and 4, respectively. The feasibility of optical phase noise suppression with the R-PCE and its decision-aided version (DA-R-PCE) in the QPSK/16QAM CO-OFDM system are demonstrated by Monte-Carlo simulations, which verify that R-PCE with only a few number of principal components q ( = 3) provides a significantly larger laser linewidth tolerance than conventional algorithms, including the common phase error compensation algorithm and linear interpolation algorithm. Numerical results show that the optimal performance of R-PCE and DA-R-PCE can be achieved with a moderate q, which is beneficial for low-complexity hardware implementation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here