
Nonlinear standing waves on a periodic array of circular cylinders
Author(s) -
Lijun Yuan,
Ya Yan Lu
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.020636
Subject(s) - physics , amplitude , nonlinear system , optics , wavenumber , standing wave , perturbation (astronomy) , wave propagation , mathematical analysis , mathematics , quantum mechanics
A periodic array of parallel and infinitely long dielectric circular cylinders surrounded by air can be regarded as a simple two-dimensional periodic waveguide. For linear cylinders, guided modes exist continuously below the lightline in various frequency intervals, but standing waves, which are special guided modes with a zero Bloch wavenumber, could exist above the lightline at a discrete set of frequencies. In this paper, we consider a periodic array of nonlinear circular cylinders with a Kerr nonlinearity, and show numerically that nonlinear standing waves exist continuously with the frequency and their amplitudes depend on the frequency. The amplitude-frequency relations are further investigated in a perturbation analysis.