z-logo
open-access-imgOpen Access
Quantitative evaluation on internal seeing induced by heat-stop of solar telescope
Author(s) -
Yangyi Liu,
Naiting Gu,
Changhui Rao
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.019980
Subject(s) - wavefront , solar telescope , telescope , optics , physics , adaptive optics , refractive index , optical telescope , thermal , field (mathematics) , meteorology , mathematics , pure mathematics
heat-stop is one of the essential thermal control devices of solar telescope. The internal seeing induced by its temperature rise will degrade the imaging quality significantly. For quantitative evaluation on internal seeing, an integrated analysis method based on computational fluid dynamics and geometric optics is proposed in this paper. Firstly, the temperature field of the heat-affected zone induced by heat-stop temperature rise is obtained by the method of computational fluid dynamics calculation. Secondly, the temperature field is transformed to refractive index field by corresponding equations. Thirdly, the wavefront aberration induced by internal seeing is calculated by geometric optics based on optical integration in the refractive index field. This integrated method is applied in the heat-stop of the Chinese Large Solar Telescope to quantitatively evaluate its internal seeing. The analytical results show that the maximum acceptable temperature rise of heat-stop is up to 5 Kelvins above the ambient air at any telescope pointing directions under the condition that the root-mean-square of wavefront aberration induced by internal seeing is less than 25nm. Furthermore, it is found that the magnitude of wavefront aberration gradually increases with the increase of heat-stop temperature rise for a certain telescope pointing direction. Meanwhile, with the variation of telescope pointing varying from the horizontal to the vertical direction, the magnitude of wavefront aberration decreases at first and then increases for the same heat-stop temperature rise.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here