Integrated electrically driven surface plasmon resonance device for biosensing applications
Author(s) -
Álvaro Jimenez,
Dominic Lepage,
Jacques Beauvais,
Jan J. Dubowski
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.019763
Subject(s) - biosensor , surface plasmon resonance , materials science , surface plasmon , optics , optoelectronics , surface plasmon polariton , plasmon , localized surface plasmon , hyperspectral imaging , nanotechnology , nanoparticle , physics , remote sensing , geology
Compact and portable surface plasmon resonance (SPR) biosensors of high sensitivities can be made through integration of discrete components in a single device. We report on a device comprising a vertical cavity light emitting diode (VLED) integrated with gold-based biosensing nanostructures fabricated atop its surface. Coupling of surface plasmon waves was achieved by the introduction of a spacer SiO2 layer located between the light source and the functionalized Au thin film. The SPR signal was extracted in far field with a Au-based nanograting and detected using a custom designed hyperspectral imager. We discuss the performance of a VLED-based SPR device employed for detection of different concentration saltwater solutions.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom