
Low-complexity feed-forward carrier phase estimation for M-ary QAM based on phase search acceleration by quadratic approximation
Author(s) -
Meng Xiang,
Songnian Fu,
Lei Deng,
Ming Tang,
Perry Ping Shum,
Deming Liu
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.019142
Subject(s) - quadrature amplitude modulation , algorithm , qam , reduction (mathematics) , mathematics , quadratic equation , computer science , bit error rate , decoding methods , geometry
Blind phase search (BPS) algorithm for M-QAM has excellent tolerance to laser linewidth at the expense of rather high computation complexity (CC). Here, we first theoretically obtain the quadratic relationship between the test angle and corresponding distance matric during the BPS implementation. Afterwards, we propose a carrier phase estimation (CPE) based on a two-stage BPS with quadratic approximation (QA). Instead of searching the phase blindly with fixed step-size for the BPS algorithm, QA can significantly accelerate the speed of phase searching. As a result, a group factor of 2.96/3.05, 4.55/4.67 and 2.27/2.3 (in the form of multipliers/adders) reduction of CC is achieved for 16QAM, 64QAM and 256QAM, respectively, in comparison with the traditional BPS scheme. Meanwhile, a guideline for determining the summing filter block length is put forward during performance optimization. Under the condition of optimum filter block length, our proposed scheme shows similar performance as traditional BPS scheme. At 1 dB required E(S)/N(0) penalty @ BER = 10(-2), our proposed CPE scheme can tolerate a times symbol duration productΔf⋅T(S) of 1.7 × 10(-4), 6 × 10(-5) and 1.5 × 10(-5) for 16/64/256-QAM, respectively.