
Temperature and atmosphere tunability of the nanoplasmonic resonance of a volumetric eutectic-based Bi_2O_3-Ag metamaterial
Author(s) -
Katarzyna Sadecka,
Johann Toudert,
Hańcza B. Surma,
Dorota A. Pawlak
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.019098
Subject(s) - materials science , surface plasmon resonance , annealing (glass) , optoelectronics , plasmon , metamaterial , optics , wavelength , nanophotonics , nanoparticle , nanotechnology , composite material , physics
Nanoplasmonic materials are intensively studied due to the advantages they bring in various applied fields such as photonics, optoelectronics, photovoltaics and medicine. However, their large-scale fabrication and tunability are still a challenge. One of the promising ways of combining these two is to use the self-organization mechanism and after-growth engineering as annealing for tuning the properties. This paper reports the development of a bulk nanoplasmonic, Bi2O3-Ag eutectic-based metamaterial with a tunable plasmonic resonance between orange and green wavelengths. The material, obtained by a simple growth technique, exhibits a silver nanoparticle-related localized surface plasmon resonance (LSPR) in the visible wavelength range. We demonstrate the tunability of the LSPR (spectral position, width and intensity) as a function of the annealing temperature, time and the atmosphere. The critical role of the annealing atmosphere is underlined, annealing in vacuum being the most effective option for a broad control of the LSPR. The various potential mechanisms responsible for tuning the localized surface plasmon resonance upon annealing are discussed in relation to the nanostructures of the obtained materials.