z-logo
open-access-imgOpen Access
Multi-service RoF links with colorless upstream transmission based on orthogonal phase-correlated modulation
Author(s) -
Beilei Wu,
Ming Zhu,
Junwen Zhang,
Jing Wang,
Mu Xu,
Fengping Yan,
Shuisheng Jian,
GeeKung Chang
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.018323
Subject(s) - orthogonal frequency division multiplexing , radio over fiber , optical carrier transmission rates , modulation (music) , multiplexing , polarization controller , computer science , transmission (telecommunications) , wavelength division multiplexing , orthogonal polarization spectral imaging , passive optical network , polarization division multiplexing , electronic engineering , optics , telecommunications , physics , engineering , optical fiber , channel (broadcasting) , wavelength , fiber laser , laser , acoustics
We propose and experimentally demonstrate a full-duplex radio-over-fiber (RoF) system with colorless upstream transmission based on orthogonal phase-correlated modulation (OPM). This new OPM scheme, which realized by a polarization rotator (PR) and a single-driver Mach-Zahnder modulator (MZM) at the central office (CO), achieves polarization-orthogonality between the optical carrier (OC) and subcarriers generated by radio frequency (RF) signals. By adjusting a polarization controller (PC) in the remote access units (RAU), different modulation schemes can be flexibly implemented, e.g. double-sideband (DSB) modulation for low RF service and optical carrier suppression (OCS) modulation for millimeter-wave (mm-wave) service. In the meantime, the OC can be reused for the upstream transmission without any filtering and additional PC. A proof-of-concept experiment is conducted to demonstrate the feasibility of proposed scheme, where downstream 800-Mb/s orthogonal frequency division multiplexing (OFDM) signal at 58 GHz as an mm-wave service and 800-Mb/s OFDM signal at 0.3 GHz as a low frequency wireless service, as well as an upstream 1-Gb/s on-off keying (OOK) are simultaneously delivered in a shared architecture. By providing heterogeneous services and colorless upstream transmission, the proposed architecture can be seamlessly integrated in wavelength division multiplexing passive optical network (WDM-PON).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom