
Enhanced x-ray emission from nano-particle doped bacteria
Author(s) -
M. Krishnamurthy,
M. Kundu,
Kartik Bane,
Amit D. Lad,
Prashant Kumar Singh,
Gourab Chatterjee,
G. Ravindra Kumar,
Krishanu Ray
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.017909
Subject(s) - laser , materials science , optics , absorption (acoustics) , electron , plasma , scattering , plasmon , ion , atomic physics , physics , quantum mechanics
Recently, it has been greatly appreciated that intense light matter interaction is modified due to the nano- and microstructures in the target by--surface plasmons, laser energy localization scattering etc. Extreme laser intensities produce dense plasmas and collective mechanisms generate energetic electrons, ions and hard x-rays. Recently, it is postulated that the anharmonic electron motion, driven by ultrashort, high-intensity laser pulses, provides a universal mechanism for the laser absorption. Here, we provide the first demonstration of anharmonic-resonance-aided high laser-absorption in a biological system. At intensities of ∼ 10¹⁶⁻¹⁸ W/cm², 40 fs pulses excite a plasma formed with E. coli bacteria. The density-inhomogeneities due to the micro- and nanostructures in the bacterial target increase anharmonic resonance (AHR) heating and result in a 10⁴-fold enhancement in the hard x-ray yield compared to plain solid targets. These observations lead to novel high-energy x-ray sources that have implications to lithography, imaging and medical applications.