z-logo
open-access-imgOpen Access
Ultrastable measurement platform: sub-nm drift over hours in 3D at room temperature
Author(s) -
Robert Walder,
D. Hern Paik,
Matthew S. Bull,
Carl O. Sauer,
Thomas T. Perkins
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.016554
Subject(s) - optics , photodiode , microscope , laser , materials science , optical microscope , microscopy , optical instrument , allan variance , optical tweezers , image resolution , optoelectronics , standard deviation , physics , scanning electron microscope , statistics , mathematics
Advanced optical traps can probe single molecules with Ångstrom-scale precision, but drift limits the utility of these instruments. To achieve Å-scale stability, a differential measurement scheme between a pair of laser foci was introduced that substantially exceeds the inherent mechanical stability of various types of microscopes at room temperature. By using lock-in detection to measure both lasers with a single quadrant photodiode, we enhanced the differential stability of this optical reference frame and thereby stabilized an optical-trapping microscope to 0.2 Å laterally over 100 s based on the Allan deviation. In three dimensions, we achieved stabilities of 1 Å over 1,000 s and 1 nm over 15 h. This stability was complemented by high measurement bandwidth (100 kHz). Overall, our compact back-scattered detection enables an ultrastable measurement platform compatible with optical traps, atomic force microscopy, and optical microscopy, including super-resolution techniques.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom