
Two-wavelength interferometer based on sinusoidal phase modulation with an acetylene stabilized laser and a second harmonic generation
Author(s) -
Yoshiyuki Kawata,
Kyohei Hyashi,
Tomohiro Aoto
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.016024
Subject(s) - interferometry , optics , astronomical interferometer , materials science , wavelength , laser , phase modulation , modulation (music) , phase (matter) , optical path , physics , phase noise , quantum mechanics , acoustics
A two-wavelength interferometer (TWI) based on a sinusoidal-phase-modulation method with an acetylene stabilized laser and a second harmonic generation (SHG) was developed. The periodic non-linearity error for the TWI was estimated to be ± 0.1 µm at a dead path of 0.32 m. A long-term measurement showed that the TWI stability was ± 3 × 10(-7) at a dead path of 1.00 m for 12 hours with an ambient pressure variation of 3 hPa under controlled conditions of ambient temperature and humidity. Finally, we confirmed that the TWI has substantially better stability than a single-wavelength interferometer by comparing both interferometers with large temporal and spatial temperature variations.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom