z-logo
open-access-imgOpen Access
Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field
Author(s) -
Jian-Qiang Liu,
Yu-Xiu Zhou,
Li Li,
Pan Wang,
Anatoly V. Zayats
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.012524
Subject(s) - graphene , faraday effect , plasmon , magnetic field , optics , materials science , polarization (electrochemistry) , wavelength , magneto optic effect , optoelectronics , faraday rotator , physics , nanotechnology , chemistry , quantum mechanics
We numerically demonstrate dynamically tuneable plasmon-induced transparency in a π-shaped metamolecules made of graphene nanostrips by applying external static magnetic field. It is shown that for graphene nanostrips with appropriate Fermi energy, the resonant wavelength, line-shape, and the polarization of transmitted light in the mid-infrared can be effectively controlled by magnetic field. In particular, giant polarization rotation exceeding 20° has been observed in asymmetric graphene metamolecules, which is further enhanced to almost 40° due the Faraday effect in the applied magnetic field, at around 9 μm wavelength, much higher frequency than the Faraday rotation observed in a semi-infinite graphene microribbons. The results offer a flexible approach for the development of compact, tunable graphene-based photonic devices.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom