
Young’s experiment with waves near zeros
Author(s) -
P. Senthilkumaran,
Monika Bahl
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.010968
Subject(s) - optics , vortex , physics , diffraction , optical vortex , phase (matter) , pinhole (optics) , azimuth , core (optical fiber) , beam (structure) , mechanics , quantum mechanics
We report an interesting observation in the formation of Young's fringes from a two pinhole arrangement illuminated by waves from the neighborhood of a zero of an optical phase singularity. Spacing of the Young's fringes appears to defy the dependence of pin-hole separation. But for larger pinhole separation such an anomalous phenomenon is not discernible. The experiments show that the fringe spacing is governed by the stronger local phase gradient near the vortex core that also has a radial part. Many diffraction experiments reported so far have missed this aspect as the phase gradient in a vortex beam is normally considered to have only azimuthal and longitudinal components. This work reveals the vortex core structure and is the first experimental evidence to the existence of a radial component of this phase gradient.