Temperature-independent fiber salinity sensor based on Fabry-Perot interference
Author(s) -
Xinpu Zhang,
Wei Peng
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.010353
Subject(s) - diaphragm (acoustics) , salinity , materials science , interference (communication) , optics , air gap (plumbing) , sensitivity (control systems) , fiber optic sensor , interferometry , fabry–pérot interferometer , optical fiber , optoelectronics , physics , wavelength , acoustics , channel (broadcasting) , telecommunications , electronic engineering , ecology , computer science , loudspeaker , engineering , composite material , biology
We present a novel fiber Fabry-Perot (FP) interference salinity sensor based on polyimide (PI) diaphragm. With an increase in water salinity, the PI diaphragm shrinks, and the PI diaphragm constriction causes the increase of the width of the air-gap, which causes the red shift of the interference fringes. We fabricated salinity sensor prototypes with different air-gap lengths and 20μm PI diaphragm. When salinity increases from 0mol/L to 5.47mol/L, the maximum sensitivity is 0.45nm/(mol/L). We verify that the sensitivity can be enhanced by reducing air-gap cavity length. We also choose appropriate air cavity length and PI diaphragm length to solve the cross-sensitivity between temperature and salinity. As a robust and ultra-compact salinity sensor, which is easy to be fabricated and need no alignment, this fiber interferometer can be applied for real-time salinity sensing applications.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom