z-logo
open-access-imgOpen Access
A full-duplex CATV/wireless-over-fiber lightwave transmission system
Author(s) -
ChungYi Li,
HaiHan Lu,
Cheng-Ling Ying,
ChinChi Cheng,
Che-Yu Lin,
Zhi-Wei Wan,
Jianhua Chen
Publication year - 2015
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.009221
Subject(s) - radio over fiber , optical fiber , wireless , optics , transmission (telecommunications) , bandwidth (computing) , materials science , telecommunications , electronic engineering , computer science , physics , engineering
A full-duplex CATV/wireless-over-fiber lightwave transmission system consisting of one broadband light source (BLS), two optical interleavers (ILs), one intensity modulator, and one phase modulator is proposed and experimentally demonstrated. The downstream light is optically promoted from 10Gbps/25GHz microwave (MW) data signal to 10Gbps/100GHz and 10Gbps/50GHz millimeter-wave (MMW) data signals in fiber-wireless convergence, and intensity-modulated with 50-550 MHz CATV signal. For up-link transmission, the downstream light is phase-remodulated with 10Gbps/25GHz MW data signal in fiber-wireless convergence. Over a 40-km single-mode fiber (SMF) and a 10-m radio frequency (RF) wireless transport, bit error rate (BER), carrier-to-noise ratio (CNR), composite second-order (CSO), and composite triple-beat (CTB) are observed to perform well in such full-duplex CATV/wireless-over-fiber lightwave transmission systems. This full-duplex 100-GHz/50-GHz/25-GHz/550-MHz lightwave transmission system is an attractive alternative. This transmission system not only presents its advancement in the integration of fiber backbone and CATV/wireless feeder networks, but also it provides the advantages of a communication channel for higher data rates and bandwidth.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here