
Far-field correlation of bidirectional tracking beams due to wave-front deformation in inter-satellites optical communication links
Author(s) -
SiYuan Yu,
Zhenqiang Ma,
Jing Ma,
Feng Wu,
Liying Tan
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.007263
Subject(s) - deformation (meteorology) , tracking (education) , optics , wavefront , tilt (camera) , azimuth , physics , free space optical communication , adaptive optics , optical communication , geometry , mathematics , psychology , pedagogy , meteorology
In some applications of optical communication systems, such as inter-satellites optical communication, the correlation of the bidirectional tracking beams changes in far-field as a result of wave-front deformation. Far-field correlation model with wave-front deformation on tracking stability is established. Far-field correlation function and factor have been obtained. Combining with parameters of typical laser communication systems, the model is corrected. It shows that deformation pointing-tracking errors θ(A) and θ(B), far-field correlation factor δ depend on RMS of deformation error rms, which decline with a increasing rms including Tilt and Coma. The principle of adjusting far-field correlation factor with wave-front deformation to compensate deformation pointing-tracking errors has been given, through which the deformation pointing-tracking error is reduced to 18.12″ (Azimuth) and 17.65″ (Elevation). Work above possesses significant reference value on optimization design in inter-satellites optical communication.