
Discrimination of “specific” and “nonspecific” binding in two-dimensional photonic crystals
Author(s) -
James E. Baker,
Benjamin L. Miller
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.007101
Subject(s) - photonic crystal , microfluidics , photonics , materials science , chip , virus , optics , nanotechnology , optoelectronics , computer science , physics , biology , virology , telecommunications
In this paper, we propose a design for a 2D slab photonic crystal (PhC) virus sensor and an associated signal analysis methodology that together enable single-virus detection while rejecting false positives that occur due to non-specific interactions of serum proteins and small molecules with the sensor surface. The slab-PhC design takes advantage of both the optical and geometrical properties of its incorporated structures by physically limiting virus infiltration to only the most sensitive region of the PhC sensor, while allowing simultaneous measurement of both site-selective virus infiltration and non-specific small molecule accumulation across the device. Notably, the proposed sensor transducer is compatible with both standard semiconductor fabrication procedures and lab-on-a-chip style microfluidic delivery systems. 3D finite-difference time-domain electromagnetic field computation results are presented, the outcomes of which indicate that both specific (target) virus capture and non-specific (non-target) binding can be simultaneously measured and discerned from one another. This type of capacity for background-corrected, single-pathogen target detection would provide a new and novel advancement toward sensitive, label-free virus diagnostics.