
Surface plasmon polaritons at linearly graded semiconductor interfaces
Author(s) -
D. Blažek,
Michael Čada,
Jaromír Pištora
Publication year - 2015
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.23.006264
Subject(s) - surface plasmon polariton , surface plasmon , semiconductor , plasmon , dispersion (optics) , materials science , polariton , dispersion relation , optics , permittivity , group velocity , condensed matter physics , dielectric , physics , optoelectronics
New results are reported on investigation of dispersion curves for surface plasmon polaritons (SPPs) at an inhomogenously doped semiconductor/dielectric interface whereby the dielectric is represented by the same undoped semiconductor. The doped semiconductor is described by its frequency-dependent permittivity that varies with the depth. It is shown that a transition layer (TL) with a linear change in carrier concentration supports one branch dispersion curve regardless of the TL thickness. The obtained dispersion curves reach a maximum at a finite frequency depending on the TL thickness, and subsequently asymptotically approach the zero frequency in the shortwave limit. Therefore two surface plasmon modes are supported at a given frequency: a long-wave mode with a positive group velocity and a short-wave mode with a negative group velocity. A condition of a zero group velocity can be satisfied by tuning the TL layer. It is shown that the conventional dispersion relation for SPPs at a TL with a zero thickness is an asymptotic solution, and the convergence of real dispersion curves is point-wise instead of an expected uniform convergence.