z-logo
open-access-imgOpen Access
Self-organized nanoparticle photolithography for two-dimensional patterning of organic light emitting diodes
Author(s) -
Getachew Ayenew,
A. Fischer,
ChungHan Chan,
Chii Chang Chen,
Mohamad Chakaroun,
Jeanne Solard,
Lintao Peng,
Azzedine Boudrioua
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.0a1619
Subject(s) - photoresist , materials science , photolithography , optics , photomask , optoelectronics , nanotechnology , substrate (aquarium) , oled , lithography , resist , physics , oceanography , layer (electronics) , geology
We report a new simple and inexpensive sub-micrometer two dimensional patterning technique. This technique combines a use of a photomask featured with self-organized particles in the micro- to nano-meter size range and a photoresist-covered substrate. The photomask was prepared by depositing monodispersed silicon dioxide (SiO(2))- or polystyrene- spheres on a quartz substrate to form a close-packed pattern. The patterning technique can be realized in two configurations: a hard-contact mode or a soft-contact mode. In the first configuration, each sphere acts as a micro ball-lens that focuses light and exposes the photoresist underneath the sphere. The developed pattern therefore reproduces exactly the same spatial arrangement as the close-packed spheres but with a feature size of developed hole smaller than the diameter of the sphere. In the soft-contact mode, an air gap of few micrometers thick is introduced between the 2D array of self-organized spheres and the photoresist-covered substrate. In this case, a phase mask behavior is obtained which results in an exposure area with a lattice period being half of the sphere diameter. A 2D lattice structure with period and feature size of a developed hole as small as 750 nm and 420 nm, respectively, was realized in this configuration. We further applied this technique to host the deposition of organic films into the 2D nanostructure and demonstrated the realization of green and red nano-structured OLEDs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here