
Enhanced single-stage laser-driven electron acceleration by self-controlled ionization injection
Author(s) -
Song Li,
N. Hafz,
Maryam Mirzaie,
Thomas Sokollik,
Ming Zeng,
Min Chen,
Zheng-Ming Sheng,
Jie Zhang
Publication year - 2014
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.029578
Subject(s) - atomic physics , ionization , helium , electron , laser , plasma , materials science , jet (fluid) , cathode ray , physics , optics , ion , nuclear physics , quantum mechanics , thermodynamics
We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers.