z-logo
open-access-imgOpen Access
Broadband RF disambiguation in subsampled analog optical links via intentionally-introduced sampling jitter
Author(s) -
Sharon R. Harmon,
Jason D. McKinney
Publication year - 2014
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.023928
Subject(s) - jitter , sampling (signal processing) , broadband , computer science , wideband , waveform , optics , signal (programming language) , nyquist rate , radio frequency , undersampling , physics , telecommunications , radar , detector , programming language
We introduce a novel technique for broadband RF disambiguation which exploits a known jitter imparted onto the sampling rate of an optical pulse source in a subsampled analog optical link. Coarse disambiguation to bandwidths equal to the sample rate is achieved using pure tones as example waveforms by comparing the amplitude of the jitter-induced sidebands relative to the measured signal within the fundamental Nyquist band (frep/2). This sampling technique allows for ultra-wideband signal recovery with a single measurement. In a first-of-its-kind photonics demonstration we show reliable disambiguation for signals with center frequencies spanning 1 MHz - 40 GHz.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom