z-logo
open-access-imgOpen Access
Fast one-step calculation of holographic videos of three-dimensional scenes by combined use of baseline and depth-compensating principal fringe patterns
Author(s) -
SeungCheol Kim,
Eun-Soo Kim
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.022513
Subject(s) - holography , optics , lookup table , computer science , ray tracing (physics) , motion compensation , tracing , algorithm , physics , programming language , operating system
As a new approach for rapid generation of holographic videos, a so-called compressed novel-look-up-table(C-NLUT), which is composed of only two principal fringe patterns (PFPs) of baseline and depth-compensating PFPs (B-PFP, DC-PFP), is proposed. Here, the hologram pattern for a 3-D video frame are generated by calculating the fringe patterns for all depth layers only by using the B-PFP, and then transforming them into those for their depth layers by being multiplied with corresponding DC-PFPs. With this one-step calculation process, the computational speed (CS) of the proposed method can be greatly enhanced. Experimental results show that the CS of the proposed method has been improved by 30.2% on the average compared to that of the conventional method. Furthermore, the average calculation time of a new hybrid MC/C-NLUT method, in which both of motion-compensation (MC) and one-step calculation schemes are employed, has been reduced by 99.7%, 65.4%, 60.2% and 30.2%, respectively compared to each of the conventional ray-tracing, LUT, NLUT, and MC-NLUT methods. In addition, the memory size of the proposed method has been also reduced by 82 × 10(6)-fold and 128-fold compared to those of the conventional LUT and NLUT methods, respectively.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here