Compact, high-pulse-energy, high-power, picosecond master oscillator power amplifier
Author(s) -
HoYin Chan,
Shaif-ul Alam,
Lin Xu,
James Bateman,
David J. Richardson,
D.P. Shepherd
Publication year - 2014
Publication title -
optics express
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.021938
Subject(s) - optics , picosecond , amplifier , materials science , amplified spontaneous emission , raman scattering , optoelectronics , laser , physics , raman spectroscopy , cmos
We report a compact, stable, gain-switched-diode-seeded master oscillator power amplifier (MOPA), employing direct amplification via conventional Yb(3+)-doped fibers, to generate picosecond pulses with energy of 17.7 μJ and 97-W average output power (excluding amplified spontaneous emission) at 5.47-MHz repetition frequency in a diffraction-limited and single-polarization beam. A maximum peak power of 197 kW is demonstrated. Such a high-energy, high-power, MHz, picosecond MOPA is of great interest for high-throughput material processing. With 13.8-μJ pulse energy confined in the 0.87-nm 3-dB spectral bandwidth, this MOPA is also a promising source for nonlinear frequency conversion to generate high-energy pulses in other spectral regions. We have explored the pulse energy scaling until the stimulated Raman Scattering (SRS) becomes significant (i.e. spectral peak intensity exceeds 1% of that of the signal).
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom