z-logo
open-access-imgOpen Access
Homodyne digital interferometry for a sensitive fiber frequency reference
Author(s) -
Silvie Ngo,
T. McRae,
Malcolm B. Gray,
D. A. Shaddock
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.018168
Subject(s) - interferometry , optics , direct conversion receiver , homodyne detection , physics , michelson interferometer , astronomical interferometer , sensitivity (control systems) , frequency domain , allan variance , optical fiber , computer science , standard deviation , electronic engineering , engineering , mathematics , statistics , computer vision
Digitally enhanced homodyne interferometry enables robust interferometric sensitivity to be achieved in an optically simple configuration by shifting optical complexity into the digital signal processing regime. We use digitally enhanced homodyne interferometry in a simple, all-fiber Michelson interferometer to achieve a frequency reference stability of better than 20 Hz/√Hz from 10 mHz to 1 Hz, satisfying, for the first time in an all fiber system, the stability requirements for the Gravity Recovery and Climate Experiment Follow On mission. In addition, we have demonstrated stability that satisfies the future mission objectives at frequencies down to 1 mHz. This frequency domain stability translates into a fractional Allan deviation of 3.3 × 10(-17) for an integration time of 55 seconds.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom