z-logo
open-access-imgOpen Access
Broadband infrared metamaterial absorber with visible transparency using ITO as ground plane
Author(s) -
Govind Dayal,
S. Anantha Ramakrishna
Publication year - 2014
Publication title -
optics express
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.394
H-Index - 271
ISSN - 1094-4087
DOI - 10.1364/oe.22.015104
Subject(s) - materials science , ground plane , dielectric , indium tin oxide , optoelectronics , metamaterial , optics , metamaterial absorber , plasmon , infrared , permittivity , layer (electronics) , nanotechnology , telecommunications , physics , tunable metamaterials , computer science , antenna (radio)
Metamaterials that have broadband absorption at MIR frequencies, and yet, are transmitive at visible frequencies are fabricated using a semi-conducting Indium Tin Oxide (ITO) film as ground plane. The metamaterial absorber consists of an array of uniform aluminum disks separated by a Zinc Sulphide (ZnS) dielectric spacer layer from the ITO ground plane. The metamaterial was fabricated by a simple, cost-effective vapor deposition through a shadow mask. Compared with the usual metal/dielectric/metal tri-layer absorbers, the metal/dielectric/ITO absorber shows a peak absorbance of 98% and >70% over the mid-infrared regime from 4 to 7 μm. The broadband nature arises due to smaller dispersion in the dielectric permittivity of ITO compared to that of plasmonic metals at mid-infrared frequencies.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom